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SHORT-TERM AGING OF NeFeB MAGNETS

FOR STIRLING LINEAR ALTERNATOR APPLICATIONS

Janis M. Niedra

Dynacs Engineering Co., Inc.
Brook Park, Ohio 44142

Summary

NeFeB type magnets have been proposed for use in free piston Stirling engine driven, linear alternators
to generate electric power during long duration space missions. These type of materials provide the

highest energy product commercial magnets, thus minimizing alternator size or mass, but do not provide

the high temperature stability of magnetic properties found in the SmCo type magnets. Therefore, to

apply the NeFeB type magnets at elevated temperatures to multiyear space missions, their long-term

aging characteristics must be determined.

This report presents 200 hour aging data for 6 types of NeFeB magnets selected from 3 manufacturers.

Aging was performed under vacuum at 150 C, with a steady demagnetizing field of 5 kOe applied. From

the data produced by this short-term aging run, candidate magnet types were selected for a planned

12,000 hour long-term run. Depending on the manufacturer's magnet type, remanence losses observed

ranged from 0 to 7%, when measured at 120 C on an established recoil line. Also, intrinsic coercivity
losses up to about 4% were observed for the M-H curve at 120 C. In some cases, these coercivity losses

were not recoverable by recharge of the magnet, indicating a structural change of the material.

Need for Permanent Magnet Aging Data

To date, the highest permanent magnet energy products, (BH)m_ , have been achieved in magnet

materials based on the elements neodymium, iron and boron. A variety of commercial magnets is

available in this class, differing in magnetic properties such as remanence (Br), intrinsic coercivity (MHc)
and temperature capability. These variations are achieved by the addition of other elements, together with

generally proprietary processing steps. Hence the magnets can be identified only as belonging to the

NeFeB class and the manufacturer's specific designation.

It is well known that the NeFeB type magnets do not have the high temperature stability of magnetic

properties possessed by the SmCo type magnets, which can operate reliably at 300 C, or even higher.

Therefore, to take advantage of the high energy product (equivalent to a high Br for a flat topped M-H

curve in the 2nd quadrant) of the NeFeB type magnets at elevated temperatures in long duration space

travel applications, the long-term aging characteristics of these magnets must be known. Unfortunately,
neither long-term (order of years) nor even short-term (a few hundred hours) magnet aging data is readily

available for the commercial magnets.

Final aging data to qualify a magnet type for a long term mission has to be taken long term itself and

under bias conditions of temperature and demagnetizing field at least as severe as expected in the

application. No reliable and inclusive formula for accelerated aging can be given, due to the possibility of

multiple aging mechanisms having various activation thresholds. The short-term tests described below
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were done to preselect 2 or 3 NeFeB magnet types from several manufacturers as the ones most likely to
give the best performance in a multi thousand hour aging run.

Magnet Selection for the Short-Term Aging Run

Two types of anisotropic, NeFeB magnet were selected from each of 3 manufacturers:

Vacuum Schmeltze (VAC): 383HR, 396HR

Ugimag: 38KC2, 40HC2

Magnequench: MQ3-F36, MQ3-F42.

The magnet selection criteria were primarily B_ and MHc • A Br below 1.2 T at 21 C was deemed to be

uninteresting, as 1.2 T is not much above the Br of some SmCo type magnets. Likewise, an r,_Hc below

about 17 kOe at 21 C was thought to be too low to provide adequate coercivity safety margin at around
100 C. Due to an inverse relationship between Br and MHc, these criteria greatly delimit the candidate
materials.

To fill the l0 available sample slots of the aging fixture, 2 samples of each of the 2 Ugimag and 2

Magnequench types and only one sample of each of the 2 VAC types were selected. The VAC type
396HR was not favored due to a relatively low Br and the VAC type 383HR was also less favored due to
relatively large steps in the top part of its M-H curve.

Aging Bias Conditions

The following aging bias conditions were chosen for the 200 hour run:
Temperature: 150 C

Demagnetizing field: 5.0 kOe.

A demagnetizing field of about 5 kOe was shown in a report [l]dealing with permanent magnet excited
linear alternator modeling and tuning to be a fairly typical value. Moreover, at 150 C, a 5 kOe

demagnetizing field is already quite close to the knee of the M-H curve in the 2nd quadrant.

The 150 C aging temperature was chosen somewhat arbitrarily as a value significantly above 120 C to

accelerate aging, but still within the manufacturers' data limits for the magnets. The 120 C value was

previously picked, again somewhat arbitrarily, as a long-term aging temperature sufficiently above the

expected real use temperature (-80 C) of the magnets to provide an adequate reliability margin.
Preliminary aging runs, 120 hours for the two Magnequench samples and 72 hours for the 40HC2, at 120

C and a 6 kOe demagnetizing field showed little or no resolvable aging effects. There is no more rigorous
justification for the choice of these bias conditions.

Experimental Setup of the 200-Hour Run

This short-term aging run was performed on 1-cm cubic magnet samples in vacuum and under the above

given bias conditions. The magnet aging fixture, which controls the sample temperature and applies a

demagnetizing field, held 10 samples between 4-inch diameter, iron-cobalt alloy pole pieces. This fixture

held the magnets in fixed positions, distributed over a pole face so as to minimize any intersample field
interference. The manufacturer of this fixture, KJS Associates of Magnetic Instrumentation, Inc.,

specified the demagnetizing field uniformity to be within 5% over the pole faces. The source of the

applied field was a GMW, Inc. 4-inch electromagnet, energized by a Kepco BOP 20-20M bipolar
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operationalpowersupply.Thispowersupplyprovidedaconstant6.58A currentto theelectromagnet,
withastabilityof betterthan1partin600overtheperiodof therun.A 3 partin 500decreasefromthe
roomtemperaturevalueof thedemagnetizingfieldwasobserved,astheelectromagnetcoilsandpartsof
itsframeandpoleswarmedupduringtherun,butnocorrectionforthissmallchangewasattempted.

Thevacuumqualityandresidualgasesin theagingfixturewerenotwelldetermined.At start,with
initializedmagnetsamplesinplace,theagingfixturewasturbopumpedfor severaldaysatroom
temperature.Thenthetemperaturewasgraduallyraisedto 120C,whilepumping.Afterabout2daysat
120C,thepressureattheturbopumpentrancedroppedto about5x10-smmHg.Clearly,thepressure
couldhavebeen10to 100timeshigherin thechamberof thefixture,duetothesmallpipeleadinginto
thefixture.Theprolongedgasloadfromthefixturemaywellhavecomefromoutgassingattemperature
of itsVitono-ringsorevenfromthepossiblyporousmagnetsamples,asnoheliumleakcouldbe
detected.Relativeto thesubsequentagingconditions,this120Cbakeoutwasquiteharmless,becausethe
magnetsthenweresubjectedtoauniformselfdemagnetizingfield of lessthan1kOe.

Magnet Initialization and Measurements

To get meaningful aging data, the magnets need to be "stabilized", or initialized, on a well defined M-H
recoil line defined by the bias conditions during aging. It has been shown by machine computation [2] of

the self-demagnetizing field of a 1-cm cubic magnet in free space, that at 150 C this field is sufficient to

cause local demagnetization of a fully charged sample of the type measured here. However, taking of the

M-H curve data requires that a magnet sample be briefly exposed to free space in order to reset electronic

integrators. This means that the M-H curve aging data has to be taken at a temperature sufficiently lower

to avoid the self-demagnetization danger. This temperature was picked to be 120 C, as it is sufficiently

low to avoid the danger and is the same as the temperature of the planned long-term aging runs.

Accordingly, the magnets were initialized at 150 C by repeated application (back and forth on recoil line)

of a demagnetizing field up to 5.0 kOe in the aging fixture and then cooled at zero field while still in the
fixture. This establishes a recoil line at 150 C. And it also induces corresponding recoil lines, but of

unknown field amplitude, at other temperatures. Thus at a lower temperature, a larger demagnetization

field can be applied without disturbing the established recoil line. In this way, the Br on the recoil line
could be measured at 120 C, before and after the aging run, to determine the fractional change AB,/Br.

Measurement of the intrinsic coercivity aging AMHc/MHc requires taking the full M-H demagnetization

curve, which obviously erases the magnetization history. Hence this data curve can only be taken once, at

say 120 C.

Experimental Results

The data from the 200-hour aging run at 150 C and -5.0 kOe is reported in Table I. The important

magnetization loss data is the decrease in remanence Br, measured before and after aging on the
established recoil line. And the important measure of loss in resistance to demagnetization is the decrease

in intrinsic coercivity MHc, measured before and after aging on the M-H curve. Hence included are the Br

and MHc on the initial M-H curve and the Br and MHc on the M-H curve of the sample recharged after

aging. A decrease in this latter Br indicates a permanent loss of magnetic moment due to a metallurgical

change. Non-recovery of the full coercivity MHc after recharge of an aged sample likewise indicates a

basic structural change.
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Descriptionof columnsinTableI:
1.TheremanenceBrbeforeaging,measuredon thesaturatedM-H curve.
2.TheremanenceBrbeforeaging,measuredon therecoilline.
3.TheremanenceB,afteraging,measuredontherecoilline.
4.TheremanenceBrof asamplerechargedafteraging,measuredonthesaturatedM-Hcurve.
5.TheintrinsiccoercivityMHcbeforeaging,measuredonthesaturatedM-Hcurve.
6.TheintrinsiccoercivityMHcafteraging,measuredontheM-Hcurve.
7.TheintrinsiccoercivityMHcof asamplerechargedafteraging,measuredonthesaturatedM-H

curve.

Table II presents the fractional aging of the remanence and coercivity, calculated from the data in Table

I. The initial Br and _,_Hcdata is also repeated for reference. It can be seen that many of these fractional

losses are at the 1 to 2 percent level, with 1% being close to the resolution limit of the experimental
apparatus. Some of the losses are not resolvable from zero.

Description of columns in Table II:
1.

2.

3.

4.

5.

6.

7.

The remanence Br before aging, measured on the saturated M-H curve. Repeats Column (1) of
Table I.

The remanence B_ before aging, measured on the recoil line. Repeats Column (2) of Table I.

Fractional loss of remanence B_ of a sample recharged after aging, measured on the saturated

M-H curves. ABr = Br, C_al- B_. initial.

Fractional loss of remanence B_, measured on the recoil line. ABe, r_o_-B_, r_L _ecoi_-B_, _t_L,_coi_.

The intrinsic coercivity MHc before aging, measured on the saturated M-H curve. Repeats
Column (5) of Table I.

Fractional loss of intrinsic coercivity uric. AMHc _ MHc, final -- MHc, initial,where MI-LIr_al is
measured on the "aged" M-H curve.

Fractional loss of intrinsic coercivity MHc. AMHc -=MH¢,,_¢h_¢a -- MH¢,_i,_,_,where MH¢,_h,_ge,Jis
measured on the saturated M-H curve of the sample recharged after aging.

With regard to ABr/Br on the recoil line at 120 C, the 10 samples fit into the following groups:

< 1% loss:

~ I% loss:

> 2% loss:

396HR, 40HC2

.38KC2

383HR, MQ3-F36, MQ3-F42.

Thus there seems to be a vague inverse correlation between the (AJ3dB0_¢o_ at 120 C and the MHc at 21

C, as inspection of columns 4 and 5 of Table II shows. Only the MQ3-F42 and the 383HR indicated a

small (- 1%), non-recoverable loss of magnetic moment, which, however, was temperature dependent.

Table II clearly shows a potentially serious, but less discussed phenomenon, namely that the intrinsic

coercivity MHc also ages. On the 120 C aged M-H curve, this loss in coercivity amounted to about l to 2

% for all samples except for the MQ3-F42, which suffered a loss over 3%. This loss tended to persist
(with altered values) for all samples even after recharge, indicating a structural change that affects

domain wall pinning.
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Conclusions and Discussion

A first cut at selecting magnet types from the set discussed in this report would be to eliminate both of

the Magnequench samples, as they exhibited a 3 to 7 % loss of ma_netization when measured at 120 C,

after being aged for 200 hours at 150 C, with a 5.0 kOe demagnetizing field applied. The remaining

candidates are the two VAC types and the two Ugimag types. The VAC type 396HR seems, however,

uninteresting, because its 1.20 T remanence (Br) at 21 C is the lowest among the samples and not far

above that achievable with the more temperature stable SmCo type materials. This pares the candidates

down to the VAC 383HR and the Ugimag 40HC2 and 38KC2. At least from the data, the VAC type

383HR does not seem to have anything going in its favor over the Ugimag types. In fact, the 383HR

appears to have a twice as high rate of loss of magnetization, compared to the 40HC2 and 38KC2. The

remaining 2 magnet types are unfortunately from the same manufacturer. Their loss of remanence was
less than 1% and loss of intrinsic coercivity averaged about 2%.

Restriction to just 2 magnet types for the long-term aging run is acceptable, as that allows 5 samples for

each type in the present 10-sample aging fixture. Aging more than 2 types simultaneously would make

for sparse data for at least one of the types. Sample type distributions such as 2-4-4 or 1-4-5 are of course

feasible, but in the group studied here, there is no sample of sufficient interest for the intended

application to justify giving it a seat in the fixture.

As observed for the Ugimag samples, the aging data hints at an irreversible increase in top slope and knee

rounding of the M-H demagnetization curve. If indeed progressive, this additional effect may lead to

accelerated aging such that in the long run the Ugimag materials may lose their initial short-term aging
advantage. However, in the proposed schedule for sample testing at 200, 1000, 2000, 6000 and 12000

hours, there is an opportunity to alter sample selection at say the 2000 hour point, with a relatively small
loss in time.
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